# Test 2



## Proportion, Functions, Relations & Transformations Semester One 2019 **Year 11 Mathematics Methods Calculator Assumed**

Exceptional schooling. Exceptional students.

| Name:                                                                    | 501  |                |       |            |
|--------------------------------------------------------------------------|------|----------------|-------|------------|
|                                                                          |      |                |       |            |
| Teacher:                                                                 |      |                |       |            |
| Date: Friday 12 <sup>th</sup> April 7.45am                               |      |                |       |            |
| You may have a formula sheet and 1 page (1 side) of notes for this test. |      |                |       |            |
| Total                                                                    | / 41 | Total Marks:41 | Time: | 45 Minutes |

### Question 1

(3 marks)

State whether the following relations are functions.

a) {(0, 0), (1, 1), (1, -1), (4, 2), (9, 3)}

No / Relation





Yes / Function

### c)



No | Relation

Question 2 (4 marks)

Given that y is directly proportional to the square of x. When y = 12, x = 4, find

a) the constant of variation (2 marks)

$$y \propto x^{2}$$
  
 $y = kx^{2}$   
 $12 = k(4^{2})$   
 $12 = 16k$   
 $\frac{12}{16} = k$   
 $\frac{3}{4} = k$ 

b) the value(s) of x when y = 27

(2 marks)

$$\frac{27}{34} = x^{2}$$

$$\frac{27 \times 4}{3} = x^{2}$$

$$\frac{36}{4} = x^{2}$$

$$\frac{4}{3} = x^{2}$$

$$\frac{4}{3} = x^{2}$$

$$\frac{4}{3} = x^{2}$$

$$\frac{4}{3} = x^{2}$$
(for both solutions)

#### **Question 3**

(8 marks)

(a) Find the radius and the coordinate of the centre of the circle with equation  $x^{2} + y^{2} - 4x - 6y - 3 = 0$ . Show your working.

(3 marks)

$$x^2 - 4x + 4 - 4 + y^2 - 6y + 9 - 9 - 3 = 0$$

$$\chi^2 - 4x + 4 + y^2 - 6y + 9 = 3 + 9 + 4$$

$$(5(-2)^2 + (y-3)^2 = 16$$

(b) The variables x and y are related as demonstrated by this graph.



Determine the equation of the graph above. i)

(3 marks)

$$y^2 = x$$

$$(y-3)^2 = a^2(x+2)$$
  
Sub(0,1)

$$(1-3)^2 = Q^2(2)$$

$$4 = 2a^2$$

$$2 = G^2$$

$$4 = 2a^{2}$$

$$2 = a^{2}$$

$$(y-3)^{2} = 2(x+2)$$

State the domain. ii)

(1 mark)

OR [2,00)

c) From (a) and (b), what features of their graphs clearly indicate that x is not a function (1 mark)

There are two y-values for the same x-value.

Question 4 (6 marks)

The function  $f(x) = \sqrt{x}$  is transformed into  $g(x) = k\sqrt{(ax+b)} + c$  by the following sequence of transformations.

(a) Sketch the following transformation of f(x).

'A translation 5 units in the positive x-axis followed by a translation of 2 units in the positive y-axis.' (2 marks)



- (b) Determine the equations of the resulting function g(x).
  - i) A translation 3 units in the direction of the negative y-axis followed by a reflection about the x-axis. (2 marks)

$$g(x) = -\sqrt{x} + 3$$

ii) A dilation parallel to the positive x-axis of factor 2 followed by a translation 4 units in the direction of the positive x-axis (2 marks)

$$g(x) = \sqrt{\frac{1}{2}(x-4)}$$

$$g(x) = \sqrt{\frac{1}{2}x - 2}$$

Question 5 (9 marks)

Consider the functions f and g where  $f(x) = ax^2 + bx + c$  and g(x) = f(2x + 3).

a) Given 
$$f(-2) = 0$$
,  $f(5) = 0$  and  $f(2) = 3$ , determine the rule for  $f(x)$ . (3 marks)

$$f(x) = a(x+2)(x-5)$$
Sub (2,3)
$$3 = a(4)(-3)$$

$$3 = -12a$$

$$-\frac{1}{4} = a$$

$$f(x) = -\frac{1}{4} (x + 2)(x - 5)$$

$$-0.25x^{2} + \frac{3}{4}x + \frac{5}{2}$$

$$-\frac{1}{4}x^{2} + \frac{3}{4}x + \frac{5}{2}$$

b) Express the rule for g(x) as a polynomial.

$$f(2x+3) = -\frac{1}{4} ((2x+3)+2) ((2x+3)-5)$$

$$= -\frac{1}{4} (2x+5) (2x-2)$$

$$= -\frac{1}{4} (4x^2 + 6x - 10)$$

$$= -x^2 - \frac{3}{2}x + \frac{5}{2}$$

c) The coordinate (1,3) lies on 
$$f(x)$$
. Determine the coordinate for  $f(x) - 4$ . (1 mark)

d) Describe the sequence of transformations that would transform 
$$f(x)$$
 to  $g(x)$ .

- (2 marks)

-> translate 3 units left

-> dilate hanzontally by S.F /2 (-1 mark for incorrect order)



OR

$$f(2(x+\frac{3}{2}))$$

- -> duate nonzontally by sif 1/2
- -> branslate 3/2 units left



Question 6 (4 marks)

The time (t) in hours required to construct a retaining wall varies inversely to the number of workers (w) being employed. An engineer estimates that it will take 8 workers 180 hours to construct a retaining wall. [Assume that all workers work at the same rate.]

a) If the retaining wall must be constructed in 150 hours, how many extra workers will need to be employed? (3 marks)

$$t = \frac{k}{W}$$

$$k = 8 \times 180$$

$$= 1440$$

$$W \approx 10$$

b) If only 6 workers are available, how long will they take to construct this wall? (1 mark)

$$t = \frac{1440}{6}$$
  
= 240 hours

#### **Question 7**

(7 marks)

(a) Express  $f(x) = \frac{6x-15}{x-3}$  into the form  $f(x) = \frac{a}{x-h} + k$ .

(2 marks)

without classpad

$$\frac{6(x-3)+3}{3-3}$$

$$f(x) = b + \frac{3}{2i-3}$$

$$\begin{array}{c} 2 & 6 \\ 2 - 3 & 6 \\ 2 - 18 \\ \hline 0 + 3 \end{array}$$

with a classipad

$$f(x) = \underbrace{a}_{x-3} + \underbrace{b}_{x}$$

50b (0,5)  $5 = \frac{a}{-3} + \frac{b}{-6}$   $-1 = \frac{a}{-3}$  (3 = a)



(b) Determine the coordinate of the x-intercept.

(1 mark)

(c) State the asymptotes of f(x).

vertical asymptote x = 3 haritantal asymptote y = 6



(d) Hence, determine the range of f(x).

(2 marks)

$$y \in \mathbb{R}$$
,  $y \neq b$ 

OR

 $(-\infty, 6) \cup (b, +\infty)$